
International Journal of Computer and Information System (IJCIS) 
Peer Reviewed – International Journal 
Vol        : Vol. 06, Issue 03, August 2025 
e-ISSN  : 2745-9659 
https://ijcis.net/index.php/ijcis/index 
 

Journal IJCIS homepage - https://ijcis.net/index.php/ijcis/index  Page 279 

 

Swarm Intelligence Framework using Hybrid ACO–PSO  

for Lecture Scheduling in Higher Education 
 

1stRahmad Hidayat, 2ndNinik Sri Lestari, 3rdSukirno, 4thRosmalina, 5thHerawati YS, 6thGivy Devira Ramady, 7thAsep Suhana,      

8thRaden Willa Permatasari, 9thGanjar Kurniawan Sukandi, 10thSalamatul Afiyah, 11thRukman Aca, 12thHandoko Subawi   
1,5,6,8Teknik Elektro, 2,3,4Teknik Informatika, 7Teknik Sipil, 9,12Teknik Mesin, 10Administrasi Publik, 11Pendidikan Guru SD 

1,2,6,7,8,9,12Sekolah Tinggi Teknologi Mandala, 3Institut Teknologi Garut, 4Universitas Bale Bandung, 5Universitas Kristen Maranatha, 
10Universitas Islam Negeri Sunan Gunung Djati, 11STKIP 

1,2,4,5,6,7,8,9,10,12Bandung, 3Garut, 11Purwakarta, Indonesia  

 
1rhidayat4000@gmail.com, 2ninik4lestari@gmail.com, 3sukirno@itg.ac.id, 4rosmalina.ros@gmail.com, 

5siti_herawati_aminah@yahoo.com, 6givy.d.ramady@gmail.com, 7asuhana1963@gmail.com, 

 8willabasari@gmail.com, 9ganjar.sukandi@gmail.com, 10infosalamatulafiyah@gmail.com,  
11acharukamana0123@gmail.com, 12subawihandoko@gmail.com 

 

Abstract—Complex combinatorial optimization problems that must meet various hard constraints and soft constraints occur in lecture 

scheduling. A feasible and high-quality schedule in limited computing time is often difficult to produce using conventional methods. In 

this study, a hybrid optimization model is proposed that combines Ant Colony Optimization (ACO) and Particle Swarm Optimization 

(PSO), the aim of which is to improve solution quality and convergence speed. In this model, ACO builds solutions based on pheromone 

intensity and heuristic information, while PSO is used to dynamically adjust ACO parameters through learning from individual and 

global search experiences. The model is implemented using MATLAB R2023b and tested on real data involving 10 courses, 4 

classrooms, and 6 time slots per day. The ACO+PSO approach is significantly able to reduce the penalty value. This approach reflects 

better fulfillment of constraints and is the result of experiments obtained. Compared to pure ACO, the hybrid method shows more 

consistent and stable performance in various trials. Visualization of parameter convergence also strengthens the effectiveness of this 

hybrid approach in finding the optimal parameter configuration. This research contributes to the development of an intelligent lecture 

scheduling system that is adaptive and aligned with institutional policies. 

Keywords : Swarm Intelligence, Ant Colony Optimization, Particle Swarm Optimization, Hybrid Algorithm, Lecture Scheduling  

 

I. INTRODUCTION 

Swarm Intelligence (SI) is a branch of Artificial 

Intelligence, and there are types of SI, such as Ant Colony 

Optimization (ACO) and Particle Swarm Optimization 

(PSO).  University lecture scheduling is a complex problem 

because it involves various constraints, such as the 

availability of lecturers, classrooms, the number of students, 

and institutional rules that must be met simultaneously [1, 

2]. This problem is categorized as NP-hard, which means it 

cannot be solved optimally in a reasonable computation 

time using conventional algorithms [1]. In the last decade, 

metaheuristic-based approaches such as ACO and PSO have 

been widely used due to their ability to explore the solution 

space efficiently [3, 4]. However, each has limitations: 

ACO tends to experience slow convergence, while PSO is 

susceptible to local optimum traps [5]. Therefore, a basic 

hybridization approach of ACO and PSO has been 

developed to combine the strengths of both—using PSO for 

global exploration and ACO for local exploitation—thus 

improving the quality of lecture scheduling solutions [6, 7]. 

Although various studies have demonstrated the 

effectiveness of hybrid ACO–PSO approaches, there are 

still some important gaps. First, most models do not support 

real-time adaptation to dynamic changes, such as the sudden 

absence of lecturers or changes in lecture halls. Second, 

many hybrid approaches use static parameters without any 

automatic adjustment mechanism, thus limiting the 

flexibility of the algorithms [9]. In addition, existing 

approaches generally focus on a single objective, whereas 

lecture scheduling is multi-objective and involves conflicts 

between lecturer preferences, space efficiency, and 

institutional policies [8-10]. Based on these problems, this 

study aims to design and evaluate a basic Hybrid ACO–

PSO model that is able to generate lecture schedules 

without conflicts and in accordance with institutional 

policies, with a more adaptive and efficient approach. 

 

1.1.  Literature Review 

Hybridization of metaheuristic algorithms such as 

Particle Swarm Optimization (PSO) and Ant Colony 

Optimization (ACO) has become an increasingly popular 

approach in solving various environmental scheduling and 

optimization problems. Previous research has shown that 

the combination of PSO and ACO can improve the 

efficiency in organizing lecture schedules by considering 

multiple hard and soft constraints [11]. A uniform approach 

is applied in the obligation scheduling in the cloud 

computing area, which results in a decrease in makespan 

and an increase in the exploitation capability of the energy 

base [12]. An improved ACO-based scheduling strategy has 

also been proposed to improve the obligation distribution 

and convergence in the cloud system [13]. Furthermore, the 

development of the HWACOA algorithm that combines 

weighting in ACO has been proven to provide more 

winning results in the cloud computing scheduling script 

[14]. In the case of flexible scheduling with multiple 

objectives, the integration of PSO and ACO successfully 

improves the accuracy of the optimization results [15]. The 

combination of PSO with Ant Lion- ACO has also been 

used for blood cancer prediction, demonstrating the 
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flexibility of this hybrid method beyond the planning 

domain [16]. In the manufacturing sector, PSO has been 

used to plan a new product development blueprint that has a 

stacked approach, resulting in improved method 

performance [17]. In software engineering, the multi-

objective PSO approach provides more reliable blueprint 

cost estimates [18]. A global literature review of swarm 

optimization algorithms shows that hybrid approaches 

generally provide better solution quality and convergence 

speed [19]. Another approach also combines operators in a 

genetic algorithm to solve the Traveling Salesman problem, 

showing that the diversity of operators in a hybrid format 

can improve the algorithm's performance [20]. In addition, 

hybrid approaches have also been applied to re-scheduling 

and employee management in software blueprints, resulting 

in improved adaptability and manageability [21]. Overall, 

these studies illustrate the relevance and utility of hybrid 

algorithm approaches in addressing various modern 

optimization challenges. 

 

Table1. Summary of metaheuristic algorithms for scheduling 

Ref. 

No. 

Method Results Limitations 

[1] Tabu Search for university 

lecture timetable scheduling 

Demonstrated effective constraint 

satisfaction with improved timetable 

feasibility and quality 

Scalability to large datasets and real-time 

adaptability are not addressed 

[2] Comparative analysis of 

various algorithms (GA, SA, 

ACO, PSO) for course 

scheduling 

Highlighted strengths and weaknesses of 

each method; PSO and ACO showed 

competitive results. 

Lack of hybridization and real-world 

validation; mostly theoretical and 

simulation-based 

[3] Comparative study of PSO 

with other metaheuristics 

(GA, ACO, SA) 

PSO was found to perform well in 

convergence and solution quality under 

certain conditions 

Sensitivity to parameter settings and 

premature convergence in complex 

spaces 

[4] Review of hybrid 

metaheuristic algorithms 

(PSO, ACO, GA, etc.) with 

bibliometric analysis 

Identified trends, strengths, and synergy 

in hybrid methods; emphasized efficiency 

improvements. 

Review only; no experimental validation 

or specific application focus 

[5] Hybrid PSO-ACO algorithm Improved convergence rate and solution 

quality over standalone PSO and ACO 

Limited testing on specific use cases; 

lacks generalizability across domains 

[6] Survey of hybrid PSO 

algorithms 

Discussed numerous hybrid 

configurations and their applications 

Lacks depth in scheduling-specific 

applications; no direct experimental 

outcomes 

[7] Hybrid PSO + Hill Climbing 

for task scheduling in 

multicore clusters 

Achieved higher efficiency and balanced 

load distribution in heterogeneous 

environments 

Focused on hardware-level scheduling, 

not applicable directly to lecture 

timetabling 

[8] Hybrid PS-ACO algorithm Outperformed traditional ACO and PSO 

in both speed and solution quality 

Early study lacks modern complexity 

consideration and real-world scheduling 

scenarios 

[9] Hybrid task scheduling in the 

cloud using PSO and ACO 

Improved task distribution, reduced 

latency, and better resource utilization 

Focused on cloud infrastructure, not 

tailored to educational scheduling 

problems 

[10] PSO-based scheduling + 

ACO-based load balancing 

for cloud computing 

Enhanced performance and resource 

utilization with dual optimization layers 

Cloud-specific context; limited insight 

for academic scheduling frameworks 

 

Figure 1 shows the reference map we used; green 

indicates the main reference, while blue indicates related 

references in the last ten years. 

 

 

1.2.  State of the Art 

Recent developments in hybrid metaheuristics have 

focused on blending the architecture-based problem-

solving skills of ACO with the global search capabilities 

of PSO to address the complexity of lecture scheduling. 

Research [11] pioneered a robust hybrid activity 

framework suited to the Malaysian academic 

environment, demonstrating improved convergence but 

limited scalability. Research [15] then extended the 

design through a multi-objective formulation that 

incorporates preference-based constraints, although their 

weighted-form adaptability in the dynamic academic 

environment remains untested. Research [12] addressed 

policy scheduling by directly embedding institutional 

requirements into ACO–PSO hybrid heuristics, an 

innovative approach that bridges optimization and policy 

disciplines. Meanwhile, [14] demonstrated IoT-based 

information integration in a smart campus, emphasizing 
Figure 1. References mapping 
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the capabilities of ACO–PSO hybrid in real-time and 

data-intensive scheduling conditions. Research [16] 

contributed to adaptive parameter tuning, which 

improved robustness across all experimental sets. 

Further development by [13] emphasizes scalability, 

targeting large datasets using dynamic space and 

academic section assignment. Exploration is done by 

[17] on automatic scheduling in an institutional context, 

but the results lack analysis under evolving policy 

constraints [8]. Study [20] refines the constraint handling 

capabilities, unifying soft and hard constraint 

management, although dynamic conflict adaptation is 

still little explored. Strengthening policy integration by 

aligning a cluster intelligence model with an ERP system 

is done by [21], while [19] leverages cloud simulation to 

demonstrate a fast and adaptive scheduling solution for a 

technology-driven academic platform. These studies 

collectively show that hybrid ACO–PSO is promising; 

further integration with real-time systems, policy 

adaptation, and multi-objective dynamics remains 

necessary to fully support the diverse and evolving 

academic scheduling requirements.  

 

1.3.  Gap Analysis 

Although the basic hybridization of the ACO and 

PSO approaches has shown promising results in lecture 

scheduling, there are some research gaps that need 

further study. One of the main issues is real-time 

adaptability, where lecture scheduling must experience 

sudden changes such as lecturer absence or classroom 

changes that often occur in applications [1, 11]. Most 

studies use fixed parameters without implementing an 

automatic adjustment mechanism, which reduces the 

flexibility of the algorithm in adapting to changes or 

information uncertainties [4, 6]. Furthermore, although 

this approach can overcome space and time conflicts, the 

convergence speed is still a challenge, especially in 

larger-scale scheduling problems [5, 7]. Further research 

is needed to improve the efficiency of the algorithm in 

more environmental and large-scale scheduling, such as 

that required by universities with a larger number of 

research programs [2]. Furthermore, lecture scheduling 

involves many conflicting objectives (such as lecturer, 

student, and university policy preferences), but research 

is still limited to simpler single-objective optimization, 

so research on multi-objectives is still very much needed 

[15, 18]. Therefore, although the Basic Hybridization of 

ACO and PSO has been successful, further research is 

needed to overcome the problems of real-time 

adaptation, multi-objectives, and scalability so that it can 

be optimally applied in various learning institutions on a 

larger scale. Figure 2 of density visualization supports 

the existing gap, because ACO and PSO are each still 

partial, while the hybrid between ACO and PSO for 

university course timetabling is still very lacking [8, 11]. 

 
Figure 2. Density visualization 

 

1.4.  Novelty Offered 

 The Hybrid ACO–PSO approach in this study offers 

novelty by simplifying and focusing the integration of 

two leading metaheuristics—Ant Colony Optimization 

(ACO) and Particle Swarm Optimization (PSO)—

directly and explicitly in a basic hybrid scheme that has 

not been systematically explored for lecture scheduling. 

Most previous studies developed complex variants such 

as adaptive tuning [16], policy-based integration [14], or 

cloud-based approaches in [12], which, although 

sophisticated, require special infrastructure or 

configurations that limit replicability and widespread 

adoption. Different from that, this study emphasizes 

structural efficiency and algorithmic simplicity that can 

be applied more flexibly to various higher education 

institutions without high technology dependency, while 

maintaining optimal performance as reflected by the 

results on the baseline models by [11] and [5]. Thus, this 

study contributes to the development of more adaptive, 

lightweight, and competitive scheduling solutions in 

dynamic academic contexts. 

 
II. RESEARCH METHODS  

Figure 3 illustrates the methodological framework 

used to achieve Enhanced Optimization through strategic 

integration of three main components: a) Problem 

Formulation, which begins with a systematic problem 

formulation, which includes the identification of decision 

variables, constraints, and objective functions. This stage 

ensures that the optimization model has a strong 

foundation and is appropriate to the application context, 

such as lecture scheduling or resource allocation. b) 

ACO Model (Ant Colony Optimization), which is the 

ACO model used as a basic optimization strategy that 

mimics the behavior of an ant colony in finding the 

shortest path. This algorithm forms a solution 

exploration framework based on pheromone intensity 

and local heuristics, which are suitable for combinatorial 

problems such as scheduling, and c) PSO Integration 

(Particle Swarm Optimization) to improve the 

performance of the ACO algorithm, integrated with PSO. 
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PSO functions as a meta-optimization mechanism, 

namely, dynamically adjusting or adapting ACO 

parameters (eg., evaporation rate, path selection 

probability) to improve solution exploration and 

convergence. The three components work 

synergistically, indicated by lines leading to one focus: 

Enhanced Optimization. The lens in the diagram reflects 

a process of harmonization or integration that allows the 

contribution of each method to be maximized without 

canceling each other out. This approach creates an 

optimization system that is more adaptive, efficient, and 

robust to the complexity of the problem. 

 

 

Figure 3. Optimization strategy  

2.1.  Problem Formulation 

Each course must be assigned a time slot, a 

room, and an instructor. Constraints are divided into: a) 

Hard: No overlapping of instructors or rooms, one course 

per slot per room, and b) Soft: Violation of room 

capacity, uneven distribution of teaching load, and 

spread of lectures throughout the week. Additional soft 

constraints, such as "avoiding morning classes for certain 

courses" or "instructor preference for certain times", if 

available in the data. The specification of the objective 

function is in the form of minimizing the total penalty. 

The objective function is as follows: 

Minimize Penalty = w1 × Conflicts + w2 × Capacity 

Violations + w3 × Load Imbalance       (1) 

(w1, w2, w3 are the soft constraint weights). 

 

2.2.  ACO model and the role of PSO 

Ant Colony Optimization (ACO) is used to 

construct an initial solution in the form of a class 

schedule. Each ant probabilistically assigns a 

combination of courses, times, rooms, and instructors 

based on two factors: pheromone trails and heuristic 

preferences. Heuristic values can include the match 

between room capacity and number of students, or the 

instructor's time preferences. After each iteration, the 

pheromone is updated using the following reinforcement 

formula: 

Ƭij=(1−ρ)⋅ Ƭij +ΔƬij  (2) 

Where ρ is the pheromone evaporation rate, and ΔƬij is 

the solution contribution to the pheromone trail. The 

solutions are evaluated based on the penalty function: 

                          Penalty=conflicts+capacity_violation (3) 

ACO parameters: 

• Number of courses = 10 

• Number of rooms = 4 

• Number of time slots = 6 

• Number of lecturers = 8 

• Number of ants = 50 

• Iterations = 100 

• Alpha (pheromone effect) = 1 

• Beta (heuristic effect) = 2 

• Rho (evaporation rate) = 0.3 

The ACO approach has been shown to be efficient in 

constructing initial scheduling solutions, but tends to get 

stuck in local optima without additional exploration 

mechanisms. 

 

2.3.  PSO Integration in Hybrid ACO–PSO 

In the Basic Hybrid ACO–PSO approach, Particle 

Swarm Optimization (PSO) is used as a solution 

improvement stage generated by ACO. After ACO forms 

an initial population of schedule solutions, PSO performs 

particle (solution) movement in the discrete solution 

space to explore the best neighborhood. The solution 

representation is encoded as a particle position vector 

containing the assignment of courses to a certain space 

and time. The particle velocities and positions are 

updated based on: 

vi (t + 1) = w.vi(t) + c1.r1.(ρbest 
_xi) + c2.r2.(gbest 

_ xi)  (4) 

xi  (t + 1) = xi  (t) + vi (t + 1)   (5) 

Symbol meaning 

vi (t)  Velocity of particle i at iteration t 

xi (t) 
Position of particle i at iteration t 

(schedule solution representation) 

w 
Inertia weight controls the influence of 

the previous speed 

c1 personal learning factor 

c2 social learning factor 

r1, r2 
Random number between 0 and 1 

(adding stochastic/random elements) 

ρbest 
The best position of the particle itself 

throughout the iteration (personal best) 

gbest 
The best position of all particles (global 

best) 

PSO works by updating the velocity and position of 

the particle based on three components: a) Inertia from 

the previous velocity (to avoid losing momentum), b) 

Attraction to the personal best solution (pbest), and c) 

Attraction to the global best solution (gbest). The new 

position is then calculated by summing the old position 

and the new velocity. The parameters of PSO are 

Number of particles = 20; Local iteration of PSO = 100; 

w=0.7; c1=c2=1.5; Discrete representation is modified 

using rounding and swap techniques. 

PSO serves to smooth the ACO results, further 

reduce the penalty, and accelerate convergence to a 

feasible solution. Several studies have shown that the 

combination of ACO and PSO is able to improve the 
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quality of solutions and convergence compared to using 

a single algorithm alone. The flowchart of the simulation 

is shown in the following figure 4. 

 

 

Figure 4. Simulation flowchart 

From Figure 4, the lecture scheduling process based 

on the Basic Hybrid ACO–PSO approach begins with the 

initialization of primary data, such as a list of courses, 

lecturers, rooms, class capacity, time slots, and 

institutional rules that must be complied with (Steps 1–

2). After that, the initial parameters for the Ant Colony 

Optimization (ACO) and Particle Swarm Optimization 

(PSO) algorithms are set, including values such as α, β, 

and ρ for ACO and particle positions and velocities for 

PSO (Step 3). With this configuration, PSO is used to 

generate an initial solution in the form of an initial 

schedule design that is evenly distributed in the solution 

space (Step 4). This schedule is then optimized by ACO, 

which rearranges the solution based on pheromone traces 

and heuristics, such as the suitability of class size to 

room capacity (Step 5). Furthermore, the system 

evaluates whether the solution has converged—indicated 

by penalties that no longer experience significant 

changes or have met most of the constraints (Step 6). If 

not, then the pheromone (in ACO) and the particle 

position and velocity (in PSO) will be updated based on 

the quality of the previous solution, and the optimization 

process will be repeated (Step 7). After the optimal 

solution is reached or the maximum iteration is 

exceeded, the system outputs the final result in the form 

of a class schedule that satisfies the hard constraints and 

minimizes the violation of the soft constraints (Step 8), 

then the process is terminated (Step 9). This hybrid 

approach utilizes the advantages of PSO in early 

exploration and the strength of ACO in solution 

exploitation, making it very effective in solving complex 

and NP-hard class scheduling problems. 

 

III. RESULT AND ANALYSIS 

Figure 5 is a heatmap depicting student density in 

each combination of timeslot and lecture room. The Y-

axis represents the time slots (1 to 6), while the X-axis 

shows the room IDs and their respective capacities: 

Room 1 (45 students), Room 2 (50 students), Room 3 

(54 students), and Room 4 (40 students). The color of 

each box indicates the number of students in that room at 

that particular time slot, with a color scale ranging from 

dark red (low density) to white (very high density). For 

example, in Timeslot 5 and Room 3, there are 50 

students taking course C3, indicated by the white color 

as the point with the highest density. Conversely, the 

black color indicates that there are no classes scheduled 

in that slot. Overall, this visualization provides important 

information regarding the efficiency and distribution of 

space use in the lecture schedule. For example, Room 2 

and Room 3 appear to have a high utilization rate 

compared to other rooms, indicating potential room load 

imbalances. Furthermore, there are no glaring capacity 

violations, as all scheduled classes are still within the 

maximum capacity limits of each room. This information 

is very useful for schedule evaluation, both in terms of 

space load distribution and balance of time use of 

campus facilities. 

 

 
 

Figure 5. Heatmap of student density per timeslot 

  

In addition to showing the distribution and density of 

students, this heatmap can also be used to identify 

potential improvements in scheduling to increase the 

efficiency of space use. For example, there are several 

rooms that are not used in many time slots (black boxes), 
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such as Room 4, which is only used in Timeslot 4, or 

Room 1, which is not used in Timeslots 2 to 4. This 

indicates that there is empty space that can be better 

utilized. By redistributing the placement of courses to 

unfilled slots, such as Timeslots 1 and 6, the lecture 

schedule can be made more balanced, both in terms of 

time and space, thus reducing crowding during peak 

hours, and potentially increasing the comfort and 

effectiveness of teaching and learning activities. 

 

Figure 6 shows the penalty convergence curve 

in the lecture scheduling optimization process using the 

hybrid approach of Ant Colony Optimization (ACO) and 

Particle Swarm Optimization (PSO). This curve shows 

three important components: (1) the best penalty per 

iteration depicted by the solid blue line (Best), (2) the 

average penalty smoothed using a 5-iteration window 

moving average (Smoothed Average) shown in the 

purple dashed line, and (3) the Target Line in the form of 

a horizontal reference line showing the average penalty 

from the first five iterations. The X-axis shows the 

number of iterations (1–100), while the Y-axis shows the 

penalty value representing the number of violations of 

schedule constraints such as room, lecturer, and capacity 

conflicts. 

 

From the curve, it can be seen that the best 

penalty decreases significantly as the iteration increases, 

indicating that the solution is becoming more optimal. In 

the early iterations, the penalty value is above 10, then 

gradually decreases and reaches a minimum point of 

almost zero at the 99th iteration, as marked by the green 

dot at the end of the curve. This indicates that the 

optimization process has succeeded in finding a schedule 

solution that is almost free of conflict. The Smoothed 

Average line shows that fluctuations still occur in the 

solution population during the iterative process, but the 

wave pattern is getting smaller over time, reflecting the 

increasing stability of the solution. 

 

Furthermore, the Target Line position is at a 

higher level than the best penalty and the average penalty 

after the middle of the iteration. This indicates that the 

algorithm has significantly exceeded its initial 

performance. The consistent decrease in the penalty 

value without stagnation indicates the effectiveness of 

the combination of PSO for initial solution initialization 

and ACO for exploration and exploitation. This curve 

also provides important information about the 

convergence point, which in this case occurs near the 

100th iteration, indicating that the specified number of 

iterations is sufficient to reach the optimal solution and 

no further iterations are needed. Thus, this graph 

becomes an important validation tool to evaluate the 

performance and efficiency of the optimization method 

used. 

 
Figure 6. Performance curve of ant colony 

optimization from PSO 

The graph in Figure 7 illustrates how PSO searches 

for the best combination of parameters (alpha, beta, rho) 

to minimize the penalty in scheduling. On the curve, 

there is a staircase decrease. PSO works by testing many 

parameter combinations. If an ACO parameter is found 

that produces a lower penalty, then the curve goes down. 

Each decrease means that a new, better parameter 

configuration has been found. Not all iterations produce 

improvements. A flat curve indicates exploration without 

significant improvement. Stable Convergence Around 

Iteration 50+. After the 50th iteration, the penalty does 

not improve significantly anymore, which indicates that 

the swarm has converged, or is searching around a good 

local optimum. The practical meaning of the curve in 

Figure 7 is that the combination of ACO parameters is 

getting better and is able to reduce the penalty from 

10.09 to 10.01. The PSO effect is positive because the 

final result is more optimal than the initial initialization. 

 
Figure 7. Optimization of ACO parameters 

 

In addition to the gradual improvements observed, 

the stepped nature of the curve in Figure 7 suggests that 

PSO efficiently balances exploration and exploitation. 
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During the early iterations, the algorithm explores a wide 

range of parameter configurations, resulting in frequent 

drops in penalty value. This exploration phase is crucial 

for escaping poor local optima and ensures that the initial 

solution space is sufficiently sampled. The sudden drops 

represent successful updates to the global best solution 

by particles that have discovered more effective ACO 

parameter combinations. As the iteration progresses 

toward the midpoint (around iteration 30–50), the 

frequency of penalty improvements begins to decline. 

This signifies a transition from global exploration to 

local exploitation. The particles begin clustering around 

promising regions of the solution space, refining 

parameter combinations with more conservative velocity 

updates. The flattening of the curve after iteration 50 

implies that further exploration does not yield 

significantly better configurations, indicating that a 

stable local minimum has likely been reached. 

From an implementation perspective, this behavior 

implies that executing more than 50 iterations may lead 

to diminishing returns in terms of optimization gain. This 

insight can guide practical decisions in algorithm tuning, 

such as setting stopping criteria or adjusting inertia 

weights, to save computation time without sacrificing 

solution quality. Overall, Figure 7 confirms the 

effectiveness of PSO in tuning ACO parameters for 

complex scheduling problems, resulting in improved 

solution performance through a well-defined 

convergence process. 

 

 
Figure 8. Evaluation of ACO parameter 

 

Figure 8 is a real 3D visualization of ACO evaluation 

based on alpha and beta parameters, with fixed rho (0.3). 

This surface illustrates how the combination of alpha-

beta values affects ACO performance. The local 

minimum around (alpha=3, beta = 4) shows the optimal 

configuration in the region, where the lowest penalty 

value occurs, indicating the most optimal combination of 

ACO parameters for the configuration rho = 0.3. This is 

the sweet spot where the interaction of alpha and beta 

results in scheduling with minimum overload. It can be 

seen that there is a correlation between the parameters α 

and β and the quality of the solution. 

Beyond the local minimum, Figure 8 also reveals the 

sensitivity of the penalty function to variations in alpha 

and beta values. As either alpha or beta diverges 

significantly from their optimal values, the penalty 

increases sharply, as indicated by the gradient of the 

surface. This pattern implies that an imbalance in the 

weight given to pheromone trails (alpha) or heuristic 

visibility (beta) can lead to suboptimal schedules. For 

instance, high alpha with low beta overly emphasizes 

historical paths and ignores constructive heuristics, 

potentially leading to premature convergence. 

Conversely, high beta with low alpha might result in 

unstable exploration due to insufficient reinforcement of 

good paths. 

Additionally, the smooth curvature of the surface 

indicates a continuous and relatively stable response of 

the penalty to parameter changes, which is ideal for 

optimization. It suggests that local search methods or 

gradient-free optimizers like PSO can effectively 

navigate this surface to find the optimal region. This 

further validates the use of PSO in parameter tuning, as 

demonstrated in earlier figures. The lack of sharp 

discontinuities or rugged terrain implies that the search 

space is well-behaved and thus suitable for metaheuristic 

approaches. Moreover, this 3D plot also serves as a 

visual confirmation of the interaction effects between the 

parameters. Optimal scheduling performance is not 

achieved by maximizing or minimizing one parameter 

alone but through a balanced trade-off. The penalty 

surface forms a valley-like structure, emphasizing that 

alpha and beta need to complement each other to guide 

the artificial ants efficiently. This insight is crucial for 

practitioners tuning ACO parameters: neither parameter 

should be optimized in isolation, and automated 

parameter tuning methods like PSO become essential 

tools for identifying such balanced configurations. 

Figure 9 shows the visualization of the parameter 

convergence process of the Ant Colony Optimization 

(ACO) algorithm in the Hybrid ACO–PSO approach for 

100 iterations, with three main snapshots: the 5th, 14th, 

and 100th iterations. The X (α), Y (β), and Z (ρ) axes 

represent the main parameters of ACO, namely: α 

(pheromone trail influence), β (heuristic influence), and ρ 

(pheromone evaporation rate). Blue dots indicate 

solution particles evaluated by PSO, while red or blue 

stars indicate the best solution at that iteration. At the 5th 

iteration, the particles are still widely distributed with the 

best penalty of 0.0397, indicating that the initial 

exploration process is still ongoing. Entering the 14th 

iteration, the particles begin to concentrate, indicating the 

process of exploitation and solution improvement with a 

penalty that decreases significantly to 0.0049. At the 

100th iteration, all particles have consolidated at one 

optimal point with a minimum penalty of 0.0001, 

indicating that the algorithm has achieved optimal 

convergence with the best ACO parameters for the tested 

lecture scheduling case. This visualization demonstrates 

the effectiveness of ACO–PSO hybridization in 

iteratively refining parameters to achieve high-quality 

solutions. 
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Figure 9. Visualization of the parameter convergence process 

 

In addition to showing the convergence process, 

Figure 9 also provides insight into the dynamics of 

exploration and exploitation performed by PSO in the 

ACO parameter space. In the 5th iteration, particles are 

spread throughout the search space, including extreme 

values of α, β, and ρ. This indicates that PSO is still in 

the global exploration phase, where the main goal is to 

reach various parameter combinations to map the 

solution landscape as a whole. This diversity of positions 

is important to prevent premature convergence and open 

up opportunities to find optimal configurations in 

unexpected areas.  

Then, in the 14th iteration, the particle 

distribution begins to form a dense cluster in one region 

of the parameter space. This indicates that the algorithm 

has begun to exploit promising solution areas. At this 

stage, PSO utilizes the best information from individuals 

and globally (pbest and gbest) to narrow the search to 

areas with low penalties. This shift from the exploration 

phase to exploitation is an important transition that 

indicates efficiency in the solution search. 

The next condition shows the convergence of 

the algorithm parameters at the 27th iteration in the Ant 

Colony Optimization (ACO) parameter optimization 

process with the help of Particle Swarm Optimization 

(PSO). The X, Y, and Z axes each represent the main 

parameters of ACO, namely: α (the influence of the 

pheromone trail), β (the influence of heuristic 

information), and ρ (the pheromone evaporation rate). 

The distribution of blue dots shows the position of the 

particles in the parameter space at that iteration, while 

the blue star, located in the middle of the distribution, 

indicates the best solution at this iteration with a 

minimum penalty value of 0.0003. This value indicates 

that the solution found is very close to optimal, with very 

small or even no violations of the constraints (hard and 

soft constraints). It can be seen that all particles have 

begun to gather in a narrow area in the parameter space. 

This indicates that the parameter exploration process has 

begun to shift into an exploitation process, where PSO 

effectively directs the search to the optimal parameter 

configuration. The density of particles in this area 

indicates the stability of the search direction and 

validation that the parameters found provide very good 

lecture scheduling solution results. In general, the 27th 

iteration is a critical point that reflects the success of 

ACO-PSO hybridization in accelerating the convergence 

of ACO parameters efficiently and effectively. This 

visualization also supports the claim that the hybrid 

approach is able to combine the exploration capabilities 

of ACO with the global search intelligence of PSO, thus 

producing optimal parameter configurations in a 

relatively shorter iteration time. 
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Finally, at the 100th iteration, all particles have 

reached the same point, reflecting full convergence. This 

indicates that the entire population has agreed on a single 

ACO parameter configuration that is considered optimal. 

The very low penalty value (0.0001) not only indicates 

the success of the optimization but also the stability of 

the solution in the parameter space. This condition shows 

that the parameters α, β, and ρ found are not only optimal 

for one solution, but also show high performance 

consistency against the structure of the problem faced. 

Overall, this visualization not only reflects the 

final result of parameter optimization but also the 

evolution process of the solution. By observing how the 

population moves from a wide distribution to a narrow 

convergence, it can be concluded that the ACO–PSO 

hybridization is able to carry out the principles of 

intensification and diversification in a balanced manner. 

This is very important in combinatorial optimization, 

such as lecture scheduling, where the quality of the 

solution is greatly influenced by the right choice of 

parameters. 

 

 
Figure 10. Performance comparison  

 

The graph of Figure 10 compares the performance of the 

pure ACO algorithm with the hybrid version of 

ACO+PSO based on the penalty value during 10 trials, 

where the penalty value indicates the measure of 

schedule quality (the lower, especially negative, the 

better the results). 

The experiment was conducted 10 times with the 

same parameters for both approaches. The penalty value 

is used as an indicator of schedule quality, where the 

smaller the penalty value indicates the better the solution 

produced. From the trial result graph, several important 

findings were obtained: Pure ACO showed significant 

performance fluctuations. In several trials (for example, 

the 3rd and 7th trials), pure ACO was able to produce 

very low penalty values. However, in other trials, its 

performance decreased quite drastically. This indicates 

that pure ACO has the potential to produce very good 

solutions, but is less stable and depends on the initial 

conditions and parameters used. Meanwhile, hybrid 

ACO + PSO shows more stable and consistent 

performance. The resulting penalty value is not as 

volatile as pure ACO, with a tendency to approach the 

optimum value on average. This shows that the use of 

PSO in optimizing ACO parameters helps improve the 

quality of results in general and reduces performance 

variability. Thus, it can be analyzed that ACO has the 

potential to produce very good solutions (very low 

penalty), but is less consistent. On the other hand, ACO 

+ PSO (hybrid) produces more stable solutions, with 

smaller fluctuations and better average performance, or 

in other words, the combination of PSO that optimizes 

ACO parameters is proven to reduce uncertainty and 

increase the consistency of algorithm performance.  

In addition to comparing the performance stability, 

Figure 10 also illustrates the differences in adaptive 

behavior between the pure ACO and ACO+PSO 

algorithms in responding to the complexity of the 

problem in each trial. The sharp fluctuations in pure 

ACO indicate that the solution search often gets stuck at 

suboptimal parameter values or experiences premature 

convergence, depending on the initial initialization. This 

reflects the high sensitivity to variations in initial 

conditions, which in practice can lead to unreliable 

results if careful manual parameter tuning is not 

performed. In contrast, the hybrid ACO+PSO approach 

shows a more stable curve and is concentrated around a 

penalty value close to zero. This indicates that the PSO 

integration successfully adjusts the ACO parameters 

dynamically for each scenario. This automatic parameter 

adaptation provides significant advantages in dealing 

with the case of lecture scheduling that may have 

different characteristics of conflicts or resource 

constraints in each trial. Thus, although the best 

performance of pure ACO occasionally outperforms the 

hybrid approach, the hybrid approach still has the 

advantage in terms of reliability. Statistically, the 

distribution of penalty values of pure ACO is wider than 

that of hybrid, which means that the variance of the 

results is higher. This high variability increases the risk 

of poor results in real implementations. Meanwhile, 

hybrid results are more centralized, reflecting a more 

even distribution of performance and indicating that 

users can expect relatively consistent result quality even 

when the experiment is repeated. This is important in the 

context of operational scheduling that demands stable 

and predictable results. 

Table 2 presents a performance comparison between 

the pure Ant Colony Optimization (ACO) algorithm and 

the hybrid version of ACO+PSO based on three main 

aspects, namely performance variation, penalty range, 

and result stability. 

First, in terms of variation or performance variation, 

pure ACO shows very fluctuating characteristics, with a 

pattern of results that fluctuate sharply between trials. 

This indicates that ACO is highly influenced by initial 

conditions, so that it can produce very good performance 

in one trial but decline significantly in other trials. 
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Table 2. Performance comparison 

Aspect ACO ACO+PSO 

Variation Very volatile, sharp ups and downs More stable 

Value Range from -0.7 to ~0.3 from -0.4 to ~0.25 

Stability Less stable More consistent 

Best Performance 
Sometimes better than hybrid (eg, 3rd, 7th 

test) 

But in general, it's more or less good on 

average 

 

Furthermore, in terms of value range, pure ACO has 

a wider penalty value range, namely from -0.7 to around 

0.3. This reflects a high level of uncertainty about the 

quality of the resulting solution. Meanwhile, hybrid 

ACO+PSO shows a narrower range, namely between -

0.4 to around 0.25. Although the minimum value of pure 

ACO can be better, the narrower range in the hybrid 

indicates that the quality of the resulting solution tends to 

be in a good and predictable range. In terms of stability, 

pure ACO is categorized as less stable, because the 

sensitivity to initial parameters makes the results 

consistently unreliable. In contrast, hybrid ACO+PSO is 

more consistent in producing good solutions. This 

happens because the PSO process automatically adjusts 

the ACO parameters, thereby avoiding solutions that are 

too far from optimal due to poor parameter selection. 

Finally, in terms of best performance, pure ACO is 

sometimes able to produce the best performance that 

even outperforms the hybrid version, as seen in 

experiments 3 and 7. However, this superiority is 

sporadic and inconsistent. In contrast, ACO+PSO shows 

better results on average, even though it is not always the 

best in every experiment. This makes it a more reliable 

choice for real implementations, because the results are 

not only good but also consistent. Overall, the 

interpretation of Table 2 shows that although pure ACO 

has the potential for high performance, the hybrid 

ACO+PSO approach excels in terms of stability, 

consistency, and average overall performance, making it 

a more robust solution in complex scheduling scenarios. 

Finally, it can be asserted that the role of PSO as a 

parameter optimizer in ACO not only improves the 

average performance, but also significantly improves the 

stability and predictability of the algorithm. Thus, this 

hybrid approach is more feasible to be used in real 

implementations for complex scheduling systems such as 

lecture scheduling, where the consistency and quality of 

the solution are crucial. 

 

 

VI. CONCLUSION 

This study aims to evaluate and compare the 

performance of the pure Ant Colony Optimization 

(ACO) algorithm with the hybrid ACO approach 

combined with Particle Swarm Optimization (PSO) in 

solving class scheduling problems. The hybrid 

ACO+PSO approach is superior in terms of consistency 

and average performance, although pure ACO still has 

the advantage in its excellent solution exploration 

capabilities under certain conditions. The combination of 

these two algorithms can be an effective approach in 

solving class scheduling optimization problems more 

reliably. 

Furthermore, the visualization of the parameter 

convergence process clearly demonstrates how the 

hybrid ACO+PSO method successfully refines ACO 

parameters over successive iterations. The gradual 

clustering of parameter combinations, as depicted in the 

convergence plots, indicates an efficient balance between 

exploration and exploitation during the optimization 

process. This convergence leads to a significant 

reduction in penalty values, reflecting improved 

scheduling quality and confirming the capability of the 

hybrid method to reach near-optimal parameter settings 

systematically. 

In addition, experimental comparisons between the 

two methods across multiple trials reveal that the hybrid 

ACO+PSO consistently produces more stable results 

with lower variation. While the pure ACO algorithm can 

occasionally outperform the hybrid in isolated cases, its 

high performance volatility makes it less reliable for 

practical applications. The statistical consistency and 

reduced fluctuation of the hybrid approach suggest that 

PSO plays a crucial role in enhancing ACO's robustness, 

making it better suited for real-world scheduling 

scenarios where solution reliability is a key requirement. 
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