Implementation of a Web-Based Malware Analysis System With Random Forest Integration

Muhammad Fauzan, Cholid Mawardi, Eka Desy Asgawanti

Abstract


With the rapid advancement of digital technology, the threat of malware has become increasingly prevalent and sophisticated, posing significant risks to both individuals and organizations. Despite the growing need for robust protection, many existing malware analysis tools are overly complex, often requiring advanced technical knowledge, which makes them less accessible to general users. To address this gap, this study proposes the development of a web-based malware analysis system that is both powerful and user-friendly. The system is built using the Streamlit framework, which allows for the creation of interactive and responsive web applications with minimal overhead. At its core, the system integrates a Machine Learning model based on the Random Forest algorithm, chosen for its high accuracy and robustness in classification tasks, particularly in distinguishing between benign and malicious files. For in-depth file analysis, the system connects to the MetaDefender API, which scans submitted files using multiple antivirus engines and provides comprehensive threat intelligence data. To further enhance accessibility, especially for users without a technical background, the GPT API is integrated to automatically generate simplified interpretations of complex scan results, explaining the findings in natural language. The system displays results using graphical visualizations, making it easier for users to comprehend potential threats without needing to interpret raw data or technical jargon. This visual and interactive approach supports real-time decision-making and improves user experience. The methodology employed in this research is quantitative, focusing on the evaluation of the system’s performance and the effectiveness of the Random Forest model in accurately classifying malware. Key performance metrics such as accuracy, precision, recall, and F1-score are used in the analysis. Overall, this system offers several competitive advantages: enhanced accessibility, improved ease of use, and simplified result interpretation compared to traditional malware analysis tools. The research contributes to the broader field of cybersecurity by providing a more practical and user-friendly solution for malware detection, thereby helping to raise awareness and improve protective measures against digital threats.

Full Text:

PDF

References


O. Adiputra and E. Setiawan, “Klasifikasi Malicious URL Menggunakan Algoritma Improved Random Forest Dan Random Forest Berbasis Web,” J. Sains dan Inform., vol. 09, no. 01, pp. 8–14, 2023, [Online]. Available: https://scispace.com/pdf/klasifikasi-malicious-url-menggunakan-algoritma-improved-1301amsz.pdf.

J. B. Higuera et al., “Benchmarking Android Malware Analysis Tools,” Electronics, vol. 13, no. 11, pp. 1–28, 2024, doi: https://doi.org/10.3390/ electronics13112103.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A Review of Android Malware Detection Approaches Based on Machine Learning,” IEEE Xplore, vol. 8, pp. 124579–124607, 2020, doi: 10.1109/ACCESS.2020.3006143.

F. A. Rafrastara, R. A. Pramunendar, D. Prabowo, E. Kartikadarma, and U. Sudibyo, “Optimasi Algoritma Random Forest menggunakan Principal Component Analysis untuk Deteksi Malware,” J. Teknol. dan Sist. Inf. Bisnis, vol. 5, no. 3, pp. 217–223, 2023.

I. P. Y. A. Ariwanta, K. Y. E. Aryanto, and I. G. A. Gunadi, “Suricata accuracy optimization based on live analysis using One-Class Support Vector Machine method and Streamlit framework,” J. Tek. Inform., vol. 5, no. 2, pp. 301–315, 2024, doi: https://doi.org/10.52436/1.jutif.2024.5.2.1822.

J. Rafapa and A. Konokix, “Technique with Recent Variants Ransomware Detection Using Aggregated Random Forest Technique with Recent Variants,” J. Appl. Mach. Learn. Secur., vol. 11, no. 2, pp. 55–67, 2024.

J. P. Bororing, “Evaluating user-friendly interfaces in cybersecurity tools,” Human-Centric Cybersecurity Rev., vol. 9, no. 3, pp. 101–112, 2022.

M. A. Kurniawan and S. Bramasto, “Analisis Malware Menggunakan Metode Dynamic Analysis,” TECHNOPEX, pp. 860–865, 2024, [Online]. Available: https://technopex.iti.ac.id/ocs/index.php/tpx24/tpx24/paper/viewFile/1796/687.

M. R. Akbar and T. Sutabri, “Implementasi Teknologi AI Dalam Deteksi dan Pencegahan Serangan Malware pada Jaringan Komputer Perusahaan,” IJM Indones. J. Multidiscip., vol. 2, no. 3, pp. 20–30, 2024, [Online]. Available: https://journal.csspublishing.com/index.php/ijm/article/view/700.

S. M. A. Jafari, “Streamlining the Selection Phase of Systematic Literature Reviews ( SLRs ) Using AI-Enabled GPT-4 Assistant API,” J. AI Res. Optim., vol. 6, no. 1, pp. 34–45, 2024, [Online]. Available: https://arxiv.org/abs/2402.18582.

Y. W. Sitorus, P. Sukarno, and S. Mandala, “Analisis Deteksi Malware Android menggunakan metode Support Vector Machine & Random Forest,” in E-Proceeding of Engineering, 2021, vol. 8, no. 6, pp. 12500–12518, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/16864.

J. D. Nugraha, A. Budiyono, and A. Almaarif, “Analisis malware berdasarkan API call memory dengan metode deteksi signature-based,” J. Anal. Keamanan Siber, vol. 4, no. 3, pp. 45–59, 2019.

A. Z. Toscana, C. Setianingsih, and M. W. Paryasto, “Integrasi Streamlit pada Aplikasi Berbasis Web dengan Algoritma YOLO V8 dan Teknologi Drone untuk Identifikasi Jenis dan Estimasi Tinggi Pohon,” in E-Proceeding of Engineering, 2024, vol. 11, no. 3, pp. 1828–1831.

M. M. Alvanof, Bustami, and R. K. Dinata, “Penerapan Algoritma Random Forest dalam Deteksi dan Klasifikasi Ransomware,” JETI (Jurnal Elektron. dan Teknol. Informasi), vol. 5, no. 2, pp. 23–31, 2024, doi: https://doi.org/10.5201/jet.v5i2.488.

K. Inayah and K. Ramli, “Analisis Kinerja Intrusion Detection System Berbasis Algoritma Random Forest Menggunakan Dataset Unbalanced Honeynet BSSN,” J. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 11, pp. 867–876, 2024, doi: 10.25126/jtiik1148911.

Eliando and A. B. Warsito, “LockBit Black Ransomware On Reverse Shell: Analysis of Infection,” Cogito Smart J., vol. 9, no. 2, pp. 228–240, 2023, doi: https://doi.org/10.31154/cogito.v9i2.494.228-240.

O. Akinyemi, R. Sulaiman, and N. Abosata, “Analysis of the LockBit 3.0 and its infiltration into Advanced’s infrastructure crippling NHS services,” 2023, doi: 10.48550/arXiv.2308.05565.

A. O. Ojo, “Ransomware trends and mitigation strategies: A comprehensive review,” Glob. J. Eng. Technol. Adv., vol. 22, no. 3, 2025, doi: 10.30574/gjeta.2025.22.3.0038.

R. B. Hadiprakoso, W. R. Aditya, and F. N. Pramitha, “Analisis Statis Deteksi Malware Android Menggunakan Algoritma Supervised Machine Learning,” CyberSecurity dan Forensik Digit., vol. 5, no. 1, pp. 1–5, 2022, doi: https://doi.org/10.14421/csecurity.2022.5.1.3116.

W. Yunanri, Y. B. Fitriana, S. Isabela, and F. Hamdani, “Deteksi Serangan Malware Pada Web Aplikasi Menggunakan Metode Malware Analis Dinamis dan Statis,” Digit. Transform. Technol., vol. 4, no. 1, pp. 461–470, 2024, doi: https://doi.org/10.47709/digitech.v4i1.4270.

Mawardi. C, Kuswoyo. D, Falah. N, “Implementation of A Cyberpanel-Based Partial Cloud Server As A Prevention Of Security Information Management System (SIMS) Encryption,” The First Jakarta International Conference on Multidisciplinary Studies Towards Creative Industries, JICOMS 2022, Jakarta, Indonesia, Nov. 2022, pp. 153, doi: https://doi.org/10.4108/eai.16-11-2022.2326064.

R. E. Sorace, V. S. Reinhardt, and S. A. Vaughn, “High-speed digital-to-RF converter,” U.S. Patent 5 668 842, Sept. 16, 1997.

(2002) The IEEE website. [Online]. Available: http://www.ieee.org/

M. Shell. (2002) IEEEtran homepage on CTAN. [Online]. Available: http://www.ctan.org/tex-archive/macros/latex/contrib/supported/IEEEtran/

FLEXChip Signal Processor (MC68175/D), Motorola, 1996.

“PDCA12-70 data sheet,” Opto Speed SA, Mezzovico, Switzerland.

A. Karnik, “Performance of TCP congestion control with rate feedback:TCP/ABR and rate adaptive TCP/IP,” M. Eng. thesis, Indian Institute ofScience, Bangalore, India, Jan. 1999.

J. Padhye, V. Firoiu, and D. Towsley, “A stochastic model of TCP Renocongestion avoidance and control," Univ. of Massachusetts, Amherst, MA, CMPSCI Tech. Rep. 99-02, 1999.

Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, IEEE Std. 802.11, 199




DOI: https://doi.org/10.29040/ijcis.v6i3.242

Article Metrics

Abstract view : 14 times
PDF - 1 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License